

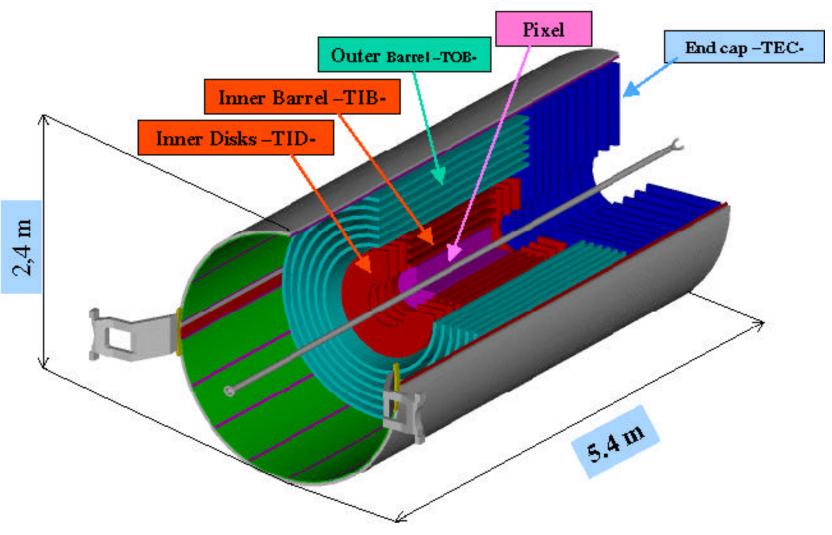
Silicon Tracker (WBS 8)

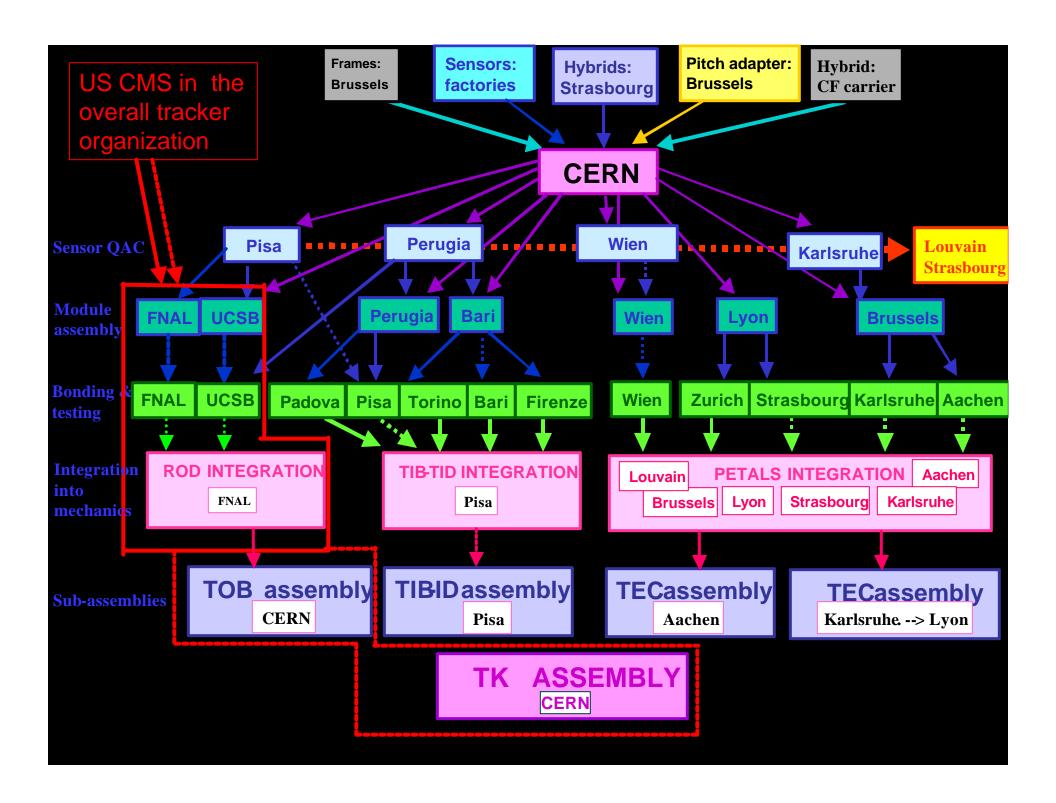
DOE-NSF Review

Joe Incandela, *University of California Santa Barbara*US CMS Silicon Tracker Project Manager
June 5, 2002

Outline:

System overview, Status, and Technical Progress
Schedule and Cost Performance
Near term plans and Issues
Installation & Commissioning
Transition to Maintenance & Operation
Summary


Si Tracker Group


- Fermilab
 - B. Flaugher, R. Lipton, P. Rapidis, L. Spiegel, S. Tkaczyk
- Kansas State University
 - T.Bolton,R.Demina,W.kahl, S.Korjenevski, M.Kubantsev,W.Reay, R.Sidwell, N.Stanton
- Northwestern University
 - D. Buchholz
- Texas Tech University
 - A. Sill
- University of California, Riverside
 - Gail Hanson, Gabriella Pasztor
- University of California, Santa Barbara
 - A. Affolder, C.Campagnari, D. Hale, J.Incandela, R. Taylor, D. White
- University of Illinois, Chicago
 - E. Chabalina, C. Gerber
- University of Kansas
 - P. Baringer, A. Bean, L. Christofek, X. Zhao
- University of Rochester
 - R. Eusebi, E. Halkiadakis, A. Hocker, P. Tipton

Two new groups will support the UCSB production line and many *new faces*

CMS Tracker

Tracker Institution Board Chair: Gunter Flugge

Steering Committee

Resource Manager

Marcello Mannelli

Project Manager Gigi Rolandi Technical Coordinator
Ariella Cattai

Project Office

R. Castaldi: Deputy P.M.

G. Flugge: Inst. Board Chairperson

J.M Brom: TEC

E. Focardi: TIB

G. Hall: Electronics

J. Incandela: TOB

R. Horisberger: Pixel

S. Schael: TEC

P. Siegrist: Test Beams/ DAQ

G. Tonelli: TIB

H. Postema: Project Engineer

G.M. Bilei: Module Production

P. Petagna: EDMS Coordinator

H.J. Simonis: Planning

M. Huhtinen: Safety

M. Krammer: Sensor Qualification

G. Fiore: Gantry Centers

A. Honma: Bonding Centers

M. Meschini: Module Test

C. Vander Velde: Frames

U. Goerlach: F.E. Hybrids

A. Marchioro: Electronics

G. Tonelli: TIB detectors

F. Raffaelli: TIB Mechanics

F. Bosi: TID Mechanics

D. Abbaneo: TOB Detectors

R. Demina: TOB Detectors

A. Onnela: TOB Mechanics

D. Pandoulas: TEC Detectors

R. Siedling: TEC Mechanics

K. Gabathuler: Pixel Mechanics

D. Contardo: Traceability

Offline Software/ b-tau: M.Mannelli/L.Silvestris

subprojects

Optoelectronics: F. Vasey

Power Supplies: G. Parrini

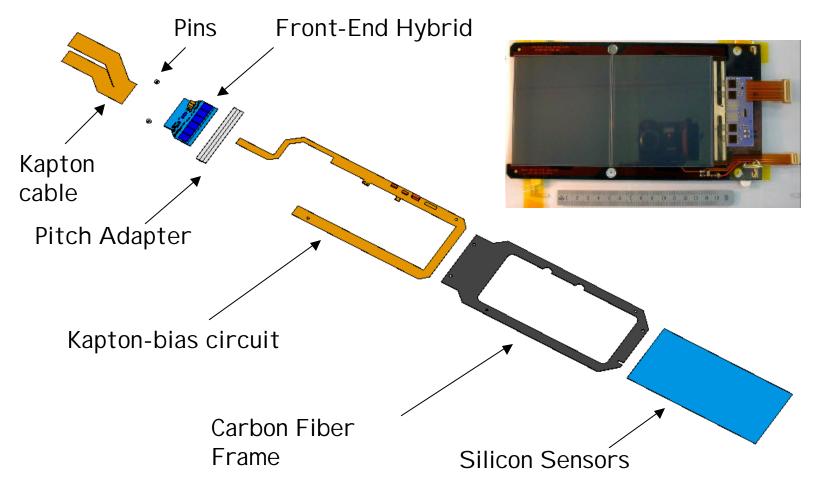
Forward Pixels: B. Gobbi

Alignment: A. Ostapchuk

Online Software: P.G. Verdini

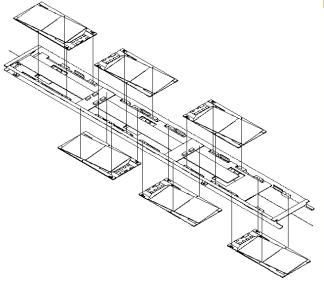
TOB Geometry

Layer	Avg. radius	Modules / phi	Total # of modules	APV / det	Pitch phi	Pitch stereo	Total # of APVs
TOB1	610	42	504	4 + 4	183	183	4,032
TOB2	696	48	576	4 + 4	183	183	4,608
TOB3	782	54	648	4	183	-	2,592
TOB4	868	60	720	4	183	-	2,880
TOB5	965	66	792	6	122	-	4,752
TOB6	1080	74	888	6	122	-	5,328


US Tasks

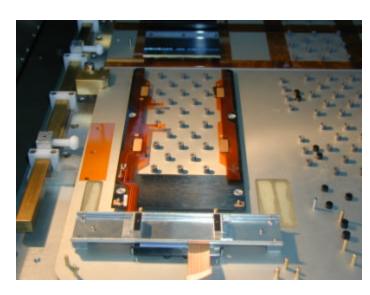
~6,000 Tracker Outer Barrel (TOB) modules
Current plan 2/3:1/3 constructed at FNAL:UCSB

Module Components*



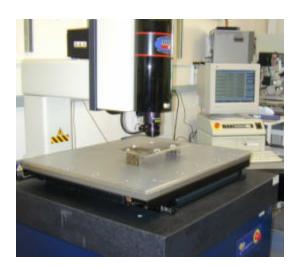
*All components procured by European groups

Rods & Wheels

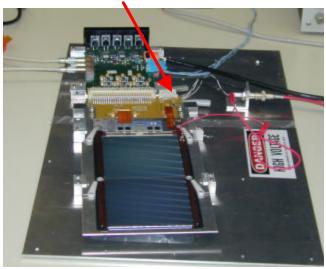


FNAL Production Center

(See talk by Lenny Spiegel)

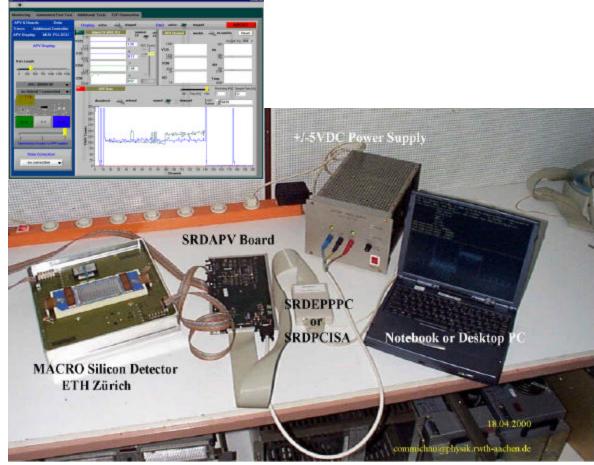

- FNAL pick and place gantry for automated module assembly
 - Made 7 very high quality pre-series TOB modules
 - All were reported to be fully functional in this month's test beam
 - Components in hand for more pre-series but...
 - Currently gantry down after move to final location in Lab D

UCSB Production line



- Significant progress.
 - Clean room expanded. K&S 8090 wirebonder now practicing on Babar modules. OGP functioning – for mechanical inspection of modules.
 - Gantry arrived in March, setup well underway.
- New post-docs
 - Russell Taylor (OPAL) lead for mechanical assembly and wirebonding
 - Tony Affolder (CDF Silicon) lead electronic testing
- New groups (UCR, and TTU) will support production line at UCSB.

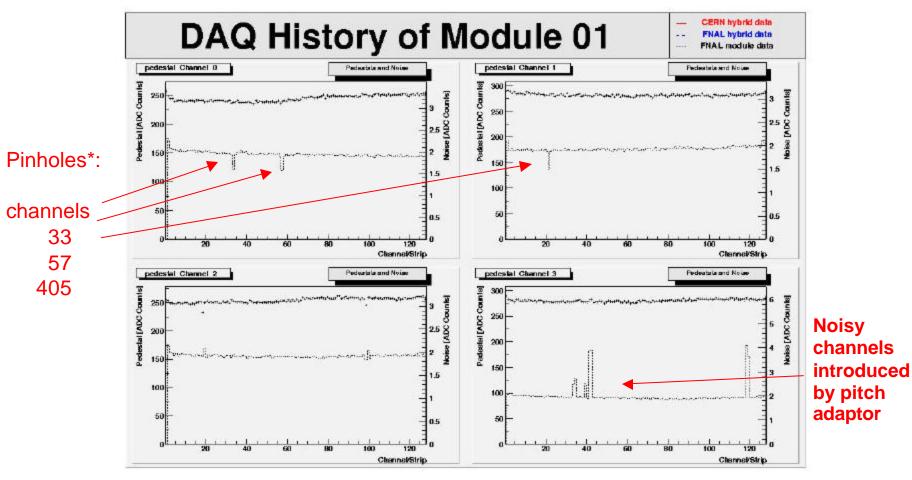
Test Stands (see talk by Elizaveta Chabalina)


Functioning TOB module made at FNAL

- We have 2 ARC stands and 2 full DAQ test stands
- •We will receive 5 more ARC stands and 2 more full DAQ test stands
- •We are fully trained in operation of these systems

ARCS* test stand now functioning at FNAL

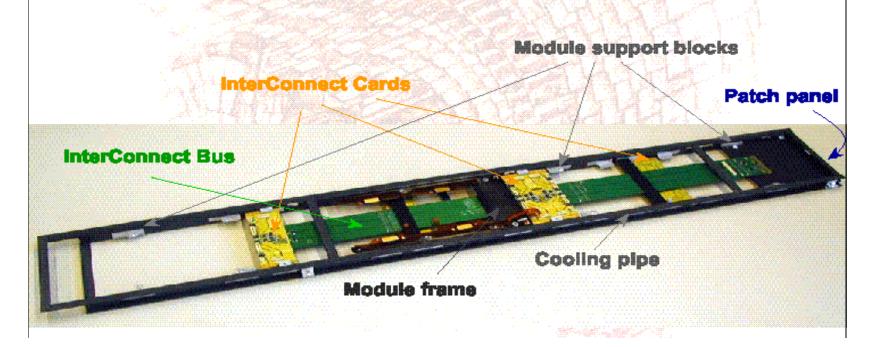
- Fast testing and Burn-in of hybrids and modules

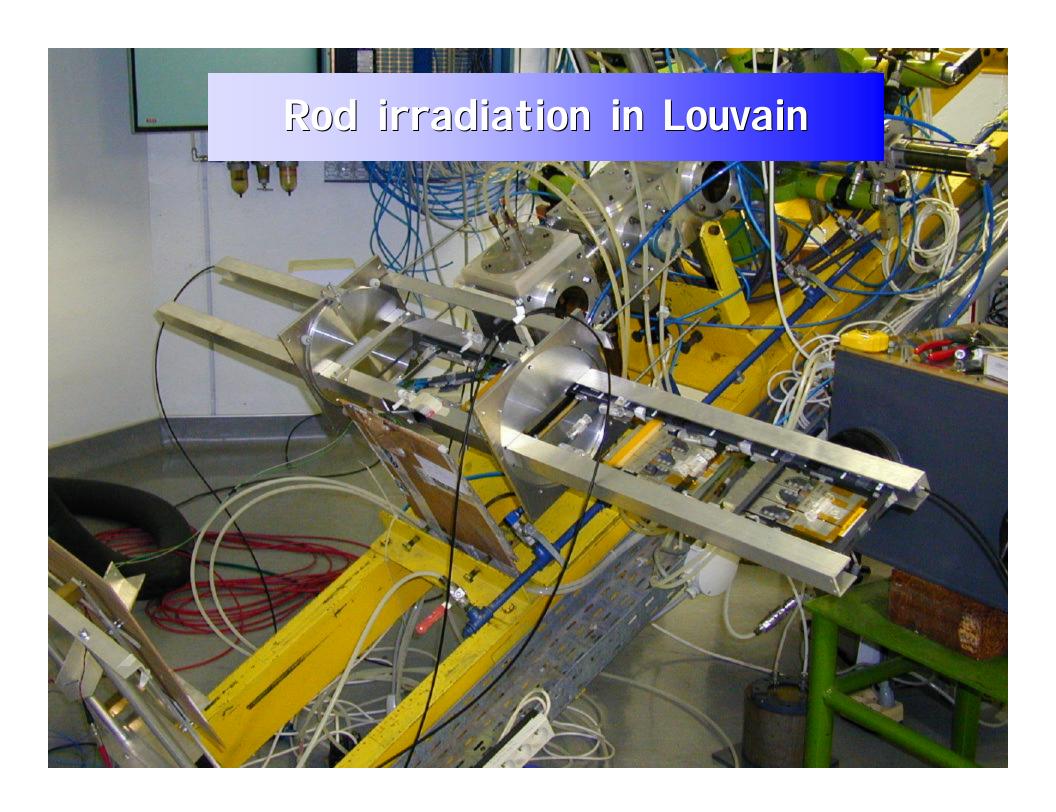


*APV Readout Controller Software

Test Results

Modules are tested after assembly at FNAL and again at CERN.

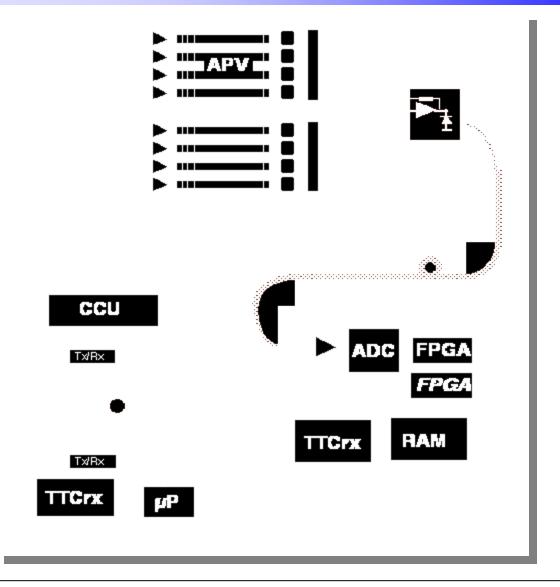



*Channels disconnected from readout due to pinholes show lower noise

Rods

- 6 (12) Modules per single (double) sided rod
- Preliminary tests complete
 - Interconnect bus and cards tested with 12 hybrids and associated opto-hybrids: definitive test of bus.
 - Signals are very clean!

Delay: HIP's and Pinholes (see talk by Slawek Tkaczyk)


- Read my HIPS: Highly Ionizing Particle— HIP (rare)
 - Due to nuclear interactions in the silicon
 - Big signal on a few strips, and can saturate all 128 channels of APV for ~200ns

- Pinhole
 - A short between metal and implant of strip coupled into APV Front end resulting in DC dark current into APV
 - Problematic when current is high and more than one pinhole present

- Solution (based on lab tests):
 - reduce bias resistor on the hybrid by a factor of 2.
 - minimizes rate of the effect to a negligible APV inefficiency
 - increases tolerable minimum number of pinholes to four
 - in cases where over 4 pinholes are present in APV during running reduction of chip dynamic range (by switching the inverter off) can extend chip lifetime
- Other possible solutions studied include:
 - alternative sensor biasing schemes
 - redesign of the chip circuit (now ruled out)

Tracker Readout System

Schedule Issues

Schedule.

- Hybrid schedule is the main issue but solutions appear to be in hand.
 - We expect to have enough to start production this winter (current schedule)
- FEDs.
 - Initial models for testing of large quantities of FE hybrids and modules to be ready in late 2002.
 - Optical models for rod testing will be available 6/03.
- Optical hybrids for assembly of modules into Rods will be available in 2002.
- Rod Assembly will wait for optical FEDs however.

Other items not expected to cause delays.

Status of Component Orders

- Sensors:
 - For the TOB, we will have a large supply arriving from ST starting this summer
- Frames: Orders starting this summer for fall
- Pitch Adapters: Will start with TOB 4 chip
- Optoelectronics: Tenders (4) finished and LOI sent for some contracts
- Central tube Thermal screen: in pre-\aration
- TIB/TID mechanics: Not on critical path
 TEC mechanics: Not on critical path
 TEC mechanics: Total path
 TEC

^{*}status as of ~3/1/02

Current Tracker Schedule

Task Name	Start	Finish
Assembly of M200 at gantry	12/3/01	2/28/02
Pre-series sensors (ST)	2/7/02	5/20/02
Production sensors (ST)	5/7/02	12/23/03
Start delivery of TOB sensors to gantry centers		5/21/02
Frames production	7/1/02	9/3/04
Start delivery of TOB frames to gantry centers		7/22/02
Hybrids pre-production	2/11/02	4/1/02
Assembly 400 hybrids	6/19/02	9/10/02
Start delivery of 1st batch of 100 hybrids to gantry centers		4/15/02
Start delivery of 2nd batch of 250 hybrids to gantry centers		7/31/02
Start delivery of production hybrids to gantry centers		11/19/02
TOB Module Construction* (J.I.)	1/5/03	3/1/05
First 8 production FED delivered		6/1/03
Installation of TOB modules on rods	6/27/03	4/15/05
Installation of rods in mechanics	1/5/04	4/15/05
TOB complete		4/15/05

^{*}Production likely to overlap CDF and D0 Run 2b projects at SiDet.

US CMS SiTrkr Milestones (v31)

System	Level?	CMSID	Milestone	v31 Base	Current Start	Variance	'99	'00	'01	'02	'03	'04	'05	'06
		2	□ Silicon Tracker System (WBS 1.8)	NA	Feb 28 '99	0 days								
SiTrkr	ML3	T-023	Deliver Front-End Chips for Prototype Construc	Feb 28 '99	Feb 28 '99	0 day:	•							
SiTrkr	ML2	T-1045	Tender for Sensors	Feb 29 '00	May 31 '00	66 day:		(19)						
SiTrkr	ML2	T-1026	Start Delivery of Front-End Chips	Apr 30 '01	Apr 30 '01	0 day:			•					
SiTrkr	ML2*	T-027	Begin Sensor Module Construction (for M200)	Oct 31 '01	Apr 1 '02	97 day:				••				
SiTrkr	ML2	T-1055	M200 Modules Ready for Installation	Jan 31 '02	Oct 1 '02	173 day:				• •				
SiTrkr	ML2	T-1066	TOB: First Rod Ready	Jan 31 '02	May 22 '02	79 day:				3				
SiTrkr	ML2	T-1067	TOB: TOB Ready for Module Integration	Jan 31 '02	Jan 31 '03	250 day:				•	•			
SiTrkr	ML2	T-1068	First Assembled Rod Ready	Feb 28 '02	May 22 '02	59 day:				(1)				
SiTrkr	ML2	T-1069	Rod Ready for Burn-In	Feb 28 '02	May 22 '02	59 day:				■				
SiTrkr	ML2*	T-1070	25% of Rods Complete	Jul 31 '02	Mar 1 '04	390 day:				•		•		
SiTrkr	ML2	T-1056	1000 Modules Produced and Ready for Installat	Aug 31 '02	Feb 2 '04	347 day:						•		
SiTrkr	ML3	T-1071	Delivery TOB Disks and Panels to CERN	Sep 30 '02	Jul 1 '03	185 day:					•			
SiTrkr	ML2	T-1072	TOB Wheel Ready	Nov 30 '02	Nov 30 '02	0 day:					•			
SiTrkr	ML3	T-1073	50% of Rods Completed	Jan 31 '03	Aug 2 '04	379 day:					•	•		
SiTrkr	ML3	T-1075	75% of Rods Completed	Jul 31 '03	Jan 6 '05	352 day:					•		•	
SiTrkr	ML3	T-1076	50% of Rods Mounted into the Tracker Wheel	Aug 31 '03	Sep 30 '04	271 day:						•		
SiTrkr	ML2*	T-1077	Delivery of TOB to the Tracker	Apr 30 '04	Apr 15 '05	239 day:						•	•	
SiTrkr	ML2	T-013	Tracker Transported to SX5	Feb 28 '05	Dec 15 '05	208 day:							•	•
SiTrkr	ML2	T-1101	Integrated Si Strip Tracker at SX5, Ready for In:	Feb 28 '05	Feb 28 '05	0 day:							•	
SiTrkr	ML1	T-014	End Installation and Cabling of SiTrkr in UX5	Oct 31 '05	May 1 '06	120 day:							1	•

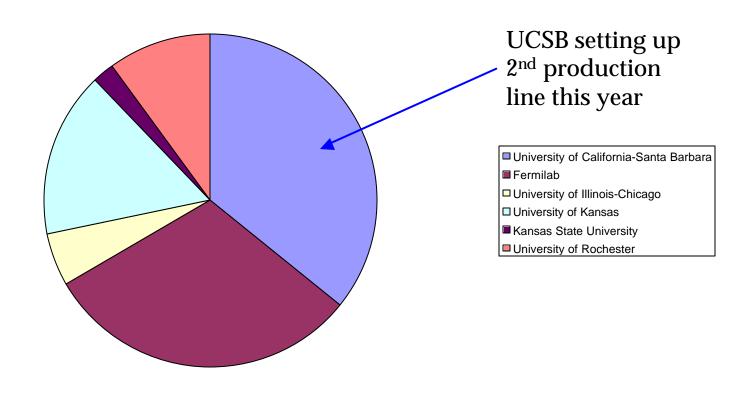
Cost Performance

Equipment

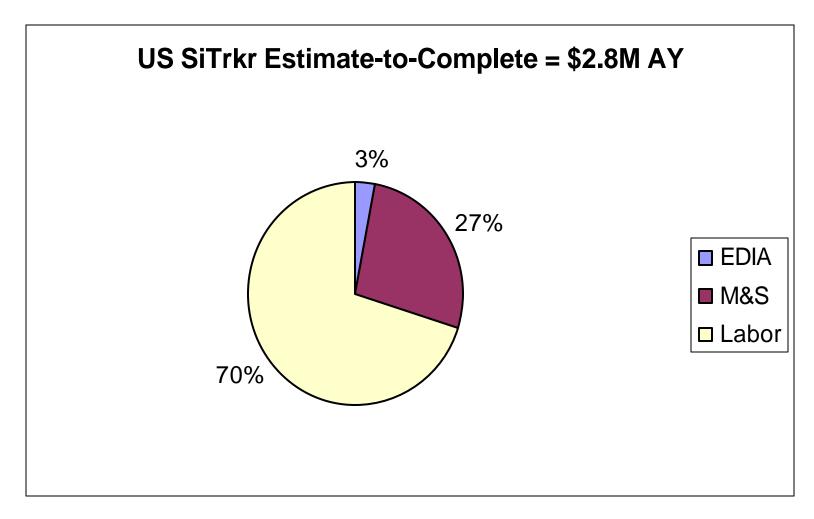
- Completed purchases of most major eqpt items.
 - Gantry 1 slightly over budget (~10%)
 - Gantry 2 on budget
 - Wirebonder 1 (5% over budget)
 - Wirebonder 2 looking at used (40% below budget)
 - Test stands as expected

Setup costs

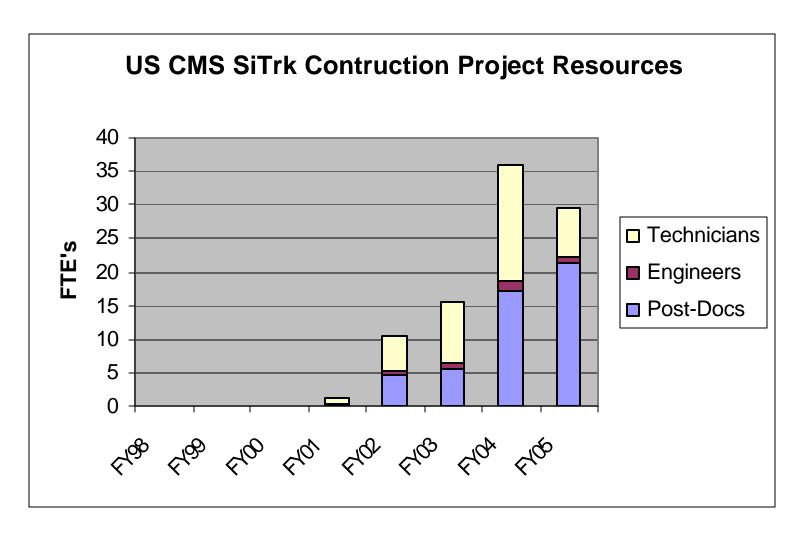
- Gantry 1 slightly over budget
- Gantry 2 no significant costs so far


Production

No significant activity or costs so far...

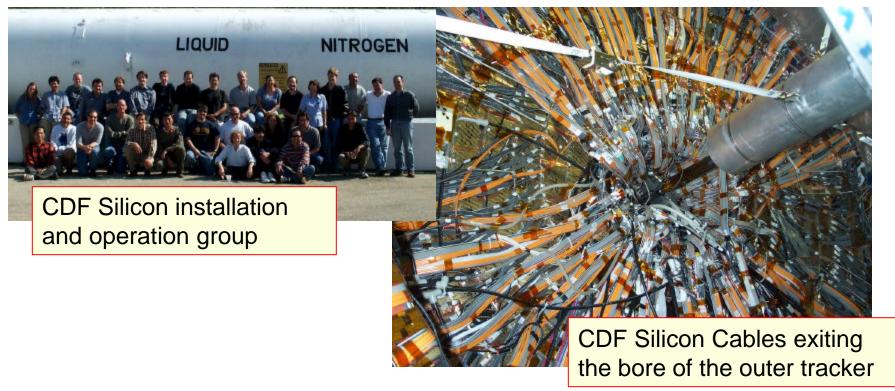

US SiTrkr FY02 Planning

Silicon Tracker SOWs FY02 -- \$1.3M



US SiTrkr Estimate-to-Complete

US SiTrkr Project Resources (FTE's)



Project end & Transition to M&O

- Our contribution to the installation and commissioning (I&C) and to the maintenance and operation (M&O) is important.
 - Installation/testing of rods in wheels (Jan 04 April 05).
 - 2-4 FTE Sr. Physicists, 7-10 Post-docs, students.
 - Testing modules on rods before installation.
 - Limited system tests/studies after installation.
 - 1 FTE Engineer (base).
 - Rod & Module repairs, cooling system, mechanics.
 - Laboratory space and equipment for testing and repairs.
 - Starting in FY06 M&O support team must be in place.
 - We estimate 14 FTE post-docs/students at CERN together with continued engineering and technical support & associated M&S and operating costs for maintaining a small laboratory space for testing and repairs.

CDF/DO Experience

- CDF and D0 installation & operation
 - A very big job which takes many months and many people
 - Current operations requires 7-10 high level experts with backup of 10-15 additional operators and monitors
- •CMS Silicon is significantly larger most relevant measures

Comment...

"Our current commissioning effort is taking so long partially because of inadequate resources (both physicist and non-physicist). So, I would advise that for commissioning especially, you do not underestimate the need or overestimate the quality of resources available - ask for enough dedicated engineers to complement as many physicists as you can get."

Chris Hill -

Co-leader

CDF Silicon Operations Group

Summary & Conclusions

- Some components were delayed.
 - Technical concerns addressed.
 - No show stoppers.
 - Hybrid issues mainly related to cost appear to be rapidly converging on a solution
 - Production start late this year/early next.
 - Schedule appears to be holding well.
 - US group will be ready.
- Completion of project in Spring 2005.
- Based on CDF/D0 experience, significant resources will be needed for I&C and M&O.