Winter Quarter 2019 — UCSB Physics 129L

Homework 5
Due Monday, February 25, 5 pm (Extended

Deadline)

Read carefully the instructions on the website on how to prepare your home-
work for turning it in to the TAs.

If your last name starts with A through N, send the homework to
Jenny. Otherwise send it to Francesco.

The emails of the TAs are on the website.

Put the instructor in cc to the email.

Make sure to have your rpi updated to pick up the latest/greatest
example programs from class.

Exercise 1

Let’s calculate the period of oscillation of a pendulum without resorting to
the small angle approximation. Let L be the length of the pendulum and M
the mass, and take the zero of potential energy at the equilibrium position. If
the angle between the pendulum and the vertical is 6 the potential energy is
U(0) = MgL(1—cos). If the maximum angle of oscillation is a, conservation
of energy gives:

1
§M1)2 + MgL(1 —cosf) = MgL(1 — cos)

Since v is tangential, v = L%, so we get
db 2
== \/fg(cose — cos)

Using the identity cos A = 1 — 2sin? % this can be written as

o J4g, ,a . ,0)
%—\/L(sm 2—sm 5

The time taken to go from 6 = 0 to § = « is one fourth of the period 7.
Therefore

r [/a d
4 4g 0 ,/sin2%—sin2§

At this point we could integrate numerically. It is a bit messy since the
integrand goes to oo at § — «. Instead we can substitute sin 3 = :;;12//22
which after some algebra gives

To

1— k2 sin?

with k = sin § and Ty = 27/ L/g is the period of the pendulum in the small
angle approx1mat10n This integral is an elliptic integral of the first kind.
Integrate numerically this equation, using whatever method you like, to plot
T/T, as a function of a. Plot « in degrees betwee 1° and 90°.

To check yourself, you might want to compare with the Python function that
returns this integral for you, see

https://docs.scipy.org/doc/scipy /reference/generated /scipy.special.ellipk.html

Exercise 2

This is an exercise in creating bitmaps to show on the screen or to save in a
file. For an example of an 8 bit color map, see
/home/pi/physrpi/campagnari/python/colorPicture.py.

We will now make a pretty picture. Consider the function f(z) = 22 + ¢
where z is a complex variable and c is a given complex constant. We can
build a series of complex numbers as z,11 = f(2,) = 22 + ¢. Depending on
the starting point 2y, the series may grow without bouds or remain bounded.
Consider a pixel map of the complex plane (z = = + iy) with 640 horizontal
pixels and 400 vertical pixel to represent the range —1.6 — 1.6 in = and
—1 — 1in y. Take ¢ = —0.79 4+ 0.156i. Loop over all pixels, and for each
pixel build up a series z, starting from a z, taken at the center of the pixel.
Fill the pixel map with the first value of n for which |z,| > 2, but stop at
n = 255 (8 bit color). Then show the map on the screen. This is the visual-
ization of a “Julia set”.

Hint: z = complex(x,y) defines the complex number z = x + uy.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipk.html

Exercise 3

This is the same as Exercise 1 in Homework 4, except that the file is now a
txt file: /home/pi/physrpi/campagnari/python/mass.txt

(Look up the numpy facility for reading a text file into a numpy array).
This data set is meant to summarize the result of an experiment where the en-
tries in the text file are the invariant masses (in GeV/c?) of electron positron
pairs. An experimenter stares at this plot, knowing that there exists a par-
ticle A of mass 155 GeV /c? which can decay as A — eTe™. She then notices
the accumulation of entries around 150-160, and wonders whether she is look-
ing at a statistical fluctuation or at the signature of the presence decays of
A particle in her dataset. We will come back to this problem later in the
quarter. (Incidentally, no such particle exists, as far as we know).

Exercise 4

You are reading data out of some hardware device with many channels that
measure time and pulseheight. The data comes out to you in as a bunch of
16 bit integers. It is packed such that bit 0 to 3 encode the channel num-
ber, bits 4 to 7 encode the time, and bits 8 to 15 encode the pulse height.
Write a program that takes the 16 bit integer and decodes the three pieces
of information. To test it, prompt the user for a number, print out channel
number, time, and pulse height.

Hint: lookup “python bitwise operations” in case you forgot what we briefly
covered in class a few weeks ago.

Exercise 5

Use the bisection method to solve for xcosx = % near x = 0.7. Calculate
your answer within 0.0001. The bisection method is a numerical method for
finding a root of an equation f(z) = 0. If values a and b are found such that
f(a) and f(b) have opposite signs and f is continuous on the interval [a, b],
then (by the Intermediate Value Theorem) the equation has a root in [a, b].
The method is to bisect the interval and replace it by either one half or the
other, thereby closing in on the root.

Exercise 6

Consider the differential equation dy/dx = f(z,y) with y(zo) = yo. You
can iteratively build an approximate solution as y,+1 = yn + h- f(zn, y,) and
Tpt1 = Tn+h, where h is a suitably small number. This is the Euler method.
A better method is the Runge-Kutta method:

1
Ynt1 = Yn + g(lﬁ + 2ky + 2k3 + ky)

Tpe1 = Tp+h

klzhf(xmyn)
h k
kQZh'f(xn+§7yn+51)
h k

k4:h'f(xn+hayn+k3)

Now consider the RC circuit in the figure. This is a low-pass filter, you should
have already seen this in lower division Physics (if you forgot, look it up!).
The output voltage satisfies the differential equation

d%ut 1
= —\Vin — %u
dt T (Vi)
where 7 = RC' is the time constant.
R

o vWA ‘o)

vin C —— vout

Take V;, to be a square wave:

Vi) =+1Vif0<t<1,2<t<3,4<t<5h, ...

Vint) = =1Vifl<t<2 3<t<4,5<t<6, ... with ¢ > 0 and ¢ in
J1S€ec.

Use the Runge-Kutta method to calculate V,(¢) with the boundary condi-
tion Vi, (t = 0) = 0 for 0 < ¢t < 100 psec. Setup your program so that you

4

will accept a value ot 7 as an input from the keyboard. To display the results,
remember that there will be a transient which dies out with a time constant
of 7, followed by a steady state solution. Therefore provide two curves:

1. Vou(t) for 0 < t < 10 psec
2. Vou(t) for 90 < t < 100 psec

The first curve will show the transient going away, and the second curve will
show the steady state solution (as long as 7 << 10 pusec).

