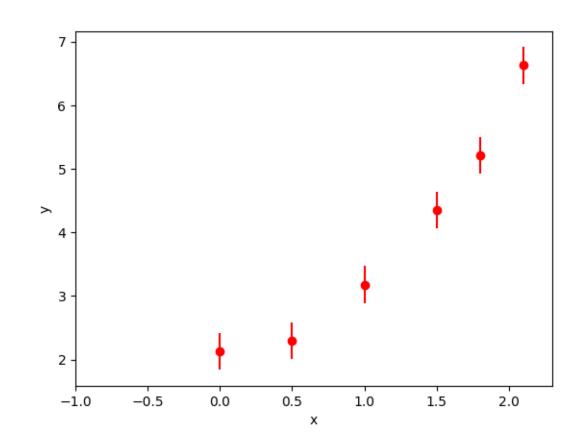
Fitting to data

- Have N data point $\{d_i\}$ with uncertainties $\{\sigma_i\}$
- Have a model with M parameters $\{\alpha_i\}$ that can predict $\{\mu_i\}$
 - μ_{i} are predictions for d_i and are a function of all the α 's
- Goal: how do I estimate $\{\alpha_i\}$?

Example

- $d_i = y_i(x_i)$
- Looks like parabola?
 - Fit to $\mu_i = \alpha_0 + \alpha_1 x_i + \alpha_1 x_i^2$



Fitting to data

- Have N data point $\{d_i\}$ with uncertainties $\{\sigma_i\}$
- Have a model with M parameters $\{\alpha_i\}$ that can predict $\{\mu_i\}$
 - μ_i are predictions for d_i and are a function of all the α 's
- Goal: how do I estimate $\{\alpha_i\}$?
- Must have M<N (M=N is a special case...no fitting needed)
- Number of degrees of freedom: ndof = N-M
- Find $\{\alpha_i\}$ that minimize chi-squared

$$\chi^2 = \sum \frac{(d_i - \mu_i(\vec{\alpha}))^2}{\sigma_i^2}$$

- Formula makes some sense.
- Want to see "small deviations"
- Want to give more importance to more precise measurements (smaller σ)
- But why the square?
 - Good reason for it, we may get to it later
- Note: this assumes that the d_i's are not correlated

• Without the σ_i in the denominator (or σ_i constant) this would be a <u>least square fit</u>

$$\chi^2 = \sum \frac{(d_i - \mu_i(\vec{\alpha}))^2}{\sigma_i^2}$$

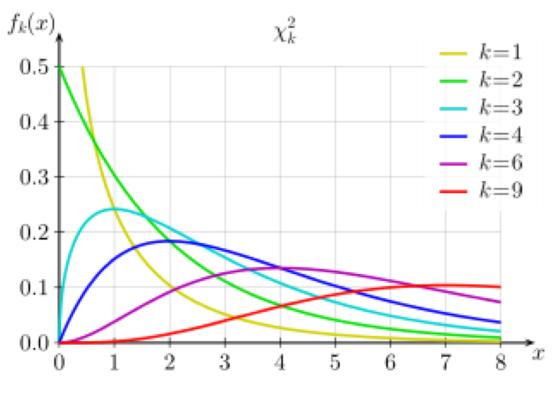
Is the value of χ^2 at min. meaningful?

- Yes.
 - Too large: bad hypothesis (or "unlucky")
 - Too small: too good a fit (overestimated uncertainties, or got "lucky")
- Rule of thumb: expect $\chi^2 \sim \text{ndof}$
 - (for well-behaved problem)
- Python function

scipy.stats.chi2.cdf(chi,ndof)

returns the integral from 0 to chi of the expected pdf for a χ^2 with ndof

$$\chi^2 = \sum \frac{(d_i - \mu_i(\vec{\alpha}))^2}{\sigma_i^2}$$



 χ^2 for k degrees of freedom

Uncertainty on the $\{\alpha_i\}$

Inverse covariance matrix

$$V^{-1}(\alpha_i \alpha_j) = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \alpha_i \partial \alpha_j}$$

Where the derivatives are taken at the best fit values (Approximate, large statistics)

Uncertainty on the $\{\alpha_i\}$

 $\Delta\chi^2=\chi^2-\chi^2_{\text{min}}$ can be used to define contours of probability for the parameters

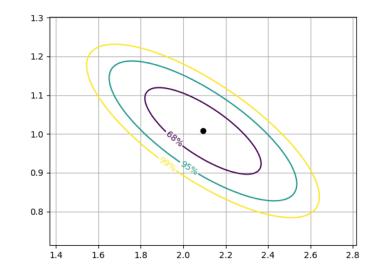
Table 38.2: Values of $\Delta \chi^2$ or $2\Delta \ln L$ corresponding to a coverage probability $1-\alpha$ in the large data sample limit, for joint estimation of m parameters.

Inverse covariance matrix

$$V^{-1}(\alpha_i \alpha_j) = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \alpha_i \partial \alpha_j}$$

Where the derivatives are taken at the best fit values (Approximate, large statistics)

$(1-\alpha) \ (\%)$	m=1	m = 2	m = 3
68.27	1.00	2.30	3.53
90.	2.71	4.61	6.25
95.	3.84	5.99	7.82
95.45	4.00	6.18	8.03
99.	6.63	9.21	11.34
99.73	9.00	11.83	14.16



Example contour for fit to 2 parameters
From one of our examples

Fitting tools

- 1. numpy.polyfit
 - Fitting to polynomials only
 - The covariance calculation is broken in numpy 1.12.1 which is what is installed on the rpi.
 - See https://mail.scipy.org/pipermail/numpy-discussion/2013-February/065649.html
 - Newer versions are OK (with the "right" calling sequence)
- 2. scipy.optimize.curve_fit
- 3. iminuit
 - Python port of Minuit package used for the last 40+ years in HEP (!)
- 4. Will write our own for a simple case, to see how it works
 - Also best for special cases where speed matters