Fitting to data

* Have N data point {d:} with uncertainties {G}

* Have a model with M parameters {o;} that can predict {L}
* w; are predictions for d; and are a function of all the a’s

* Goal: how do | estimate {o}?

Example °
* di=yi(x) >
* Looks like parabola? T,
¢ F|t to l""iz ao + OLIXi + OLIXiz +




Fitting to data

* Must have M<N (M=N is a special case...no fitting needed)
* Number of degrees of freedom: ndof = N-M
* Find {o;} that minimize chi-squared

=3 (i —:27;(@))2



* Formula makes some sense.
 Want to see “small deviations”

* Want to give more importance to more
precise measurements (smaller o)

* But why the square?
e Good reason for it, we may get to it later

* Note: this assumes that the d.’s are not
correlated

* Without the o, in the denominator (or o,
constant) this would be a least square fit




s the value of y? at min. meaningful?

* Yes. X =
* Too large: bad hypothesis (or “unlucky”) ‘

* Too small: too good a fit (overestimated
uncertainties, or got “lucky”)

* Rule of thumb: expect y? ~ ndof
* (for well-behaved problem)

e Python function
scipy.stats.chi2.cdf (chi, ndof)

returns the integral from 0 to chi of the
expected pdf for a y* with ndof

v? for k degrees of freedom



Uncertainty on the {o}

Inverse covariance matrix

1 82X2

Voleis) = 5 Ga,

Where the derivatives are taken
at the best fit values
(Approximate, large statistics)



Uncertainty on the {o}

V_l (CVZ‘CVJ') -

1 82X2

Table 38.2: Values of

Ax?|or 2AInL corresponding to a coverage probability

1 — a in the large data sample limit, for joint estimation of

Ay? = %% — %*in Can be used to define contours
of probability for the parameters

2 8041'004]'

m parameters.

(1—a) (%) m=1 m=2 m=3
68.27 1.00 2.30 3.53
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

13

1.2 A

1.1+

1.0 4

0.9 +

0.8
l.'4 1.‘6 1:8 2:0 2.‘2 2:4 2.'6 2:8

Example contour for fit to 2 parameters
From one of our examples



2.
3.

4.

Fitting tools

. numpy.polyfit

* Fitting to polynomials only

* The covariance calculation is broken in numpy 1.12.1 which is what is installed on the rpi.
e See https://mail.scipy.org/pipermail/numpy-discussion/2013-February/065649.html|

* Newer versions are OK (with the “right” calling sequence)

sclpy.optimize.curve fit
iminult
* Python port of Minuit package used for the last 40+ years in HEP (!)

Will write our own for a simple case, to see how it works
* Also best for special cases where speed matters


https://mail.scipy.org/pipermail/numpy-discussion/2013-February/065649.html

