

The BaBar Silicon Vertex Tracker (SVT)

Claudio Campagnari Claudio Campagnari University of California Santa Barbara

Outline

- Requirements
- Detector Description
- Performance
- Radiation

SVT Design Requirements and Constraints (from TDR)

Performance Requirements

- Δz resolution < 130 mm
- Single vertex resolution < 80 mm.
- Stand-alone tracking for $P_T < 100 \text{ MeV/c.}$

PEP-II Constraints

- Permanent dipole (B1) magnets at +/- 20 cm from IP.
 - Polar angle restriction: $17.2^{\circ} < \Theta < 150^{\circ}$.
 - Must be clam-shelled into place after installation of B1 magnets
- Bunch crossing period: 4.2 ns (nearly continuous interactions).
- Radiation exposure at innermost layer (nominal background level):
 - Average: 33 kRad/year.
 - In beam plane: 240 kRad/year.
- SVT is designed to function in up to 10 X nominal background.

SVT characteristics

- Five layers, double sided
 - Barrel design, L4 and 5 not cylindrical
 - 340 wafers, 6 different types
 - Low mass Kevlar-Carbon Fiber support ribs
- Upilex fanouts to route signal to ends
- Double-sided AIN HDI (104 of these)
 - Outside tracking volume
 - Mounted on Carbon Fiber cones (on B1 magnets)
- Atom chips
 - 1156 chips, 140K channels

BaBar Silicon Vertex Tracker

Space Frame and Support Cones...mounted on B1 magnets

SVT Modules

SVT High Density Interconnect

Silicon Wafers

Features

- •Manufactured at Micron.
- •300 µm thick.
- •6 different wafer designs.
- •n⁻ bulk, 4-8 k Ω cm.
- •AC coupling to strip implants.
- •Polysilicon Bias resistors on wafer, $5 M\Omega$.

Bulk Properties

- **Bias current:** 0.1 to 2.0 µA
- Bulk current: 0.1 to 2.0 μ A
- Depletion voltage: 10 to 45 V

	Strip Properties			
	<u>n-side</u>	<u>n-side</u> <u>p-side</u>		
Strip Pitch:	50 µm	55 µm	105 µm50 µm	I
Inter-strip C:	1.1 pF/cm	1.0 pF/cm	1.0 pF/cm	1.1 pF/cm
• AC decoupling C:	20 pF/cm 22 pF/	cm 34 pF	/cm 43 pF/	/cm
 Implant-to-back C: 		0.19 pF/cm	0.36 pF/cm	0.17 pF/cm
• Bias R:	4 to 8 M Ω	4 to 8 M Ω	4 to 8 M Ω	4 to 8 M Ω

Silicon Wafers

The AToM Chip

Custom Si readout IC

AToM = A Time Over threshold Machine

Features:

- •128 Channels per chip
- •Rad-Hard CMOS process (Honeywell)
- •Simultaneous
 - Acquisition
 - Digitization
 - Readout
- •Sparsified readout
- •Time Over Threshold (TOT) readout
- •Internal charge injection

The AToM Chip

Performance

- Calibration, Noise
- Occupancy
- Efficiency
- Intrinsic Resolution

Calibration

- Noise, gain, pedestals, bad channels obtained from scanning threshold with and without charge injection and counting hits
 - 600K errfun fits, 150K linear fits
 - once a day; takes ~ 2 minutes
- Very stable
- Downloadable chip parameters have not changed since Oct 1999

Noise

Layer	ENC	Layer	ENC
1φ	1200	1z	880
2 \$	1240	2z	970
Зф	1440	3z	1180
4φ	1350	4z	1210
5φ	1600	5z	1200

1 MIP at normal incidence, about 23,000 electrons

Occupancy (Layer 1)

Offline $\Delta t \sim 300$ nsec \rightarrow effective occupancy lower by factor ~ 3

Cluster efficiency

Excluding 9/208 malfunctioning readout sections

Resolution

Standalone reconstruction of low P_T tracks

Map of malfunctioning modules (9/208)

Radiation

SVTRAD System

- Monitored by 12 diodes at ~ radius of layer 1
- Diodes can abort beam
- Operation tricky due to heavy radiation damage

Measured absorbed Dose

Projected absorbed dose, midplane

Based on PEP II current profile and measured dose/current

Includes injection, etc

A bit conservative....

Off-midplane ~ x5 lower

Consequences of high doses

- Bulk damage to Si
 - increase I $_{\text{LEAK}} \rightarrow$ increase in noise
 - not a real problem until very high doses
 - type inversion
- Damage to chips
 - originally tested (fully) only to 2 MRad
 - \rightarrow test to higher doses

Bulk Damage

NIEL scaling: high energy electron cause significant damage (~1/10 of hadrons)

Not appreciated by us until recently

Tests at Elettra (Trieste)

a

0

5

10

15

20

Votage (V)

25

DT4 Ca 100kHz

30

35

40

C⁻² vs V curve show inversion
Results in ~ agreement with NI EL scaling hypothesis
Leakage current increase of order 2 μA/cm²
agrees with in-situ measurement

Detector Radiation Tests (Cont.)

- Electrical properties after inversion:
 - Strip isolation OK
 - Edge currents, no sudden increase, manageable
- Still to do: test of charge-collection efficiency

- According to literature, should be OK

 \rightarrow sensors OK to at least 5-6 MRad

AtoM tests beyond 2MRad

Significant increase in noise but chip functions to at least 5 MRad

SVT Module Replacement

- Summer 04 shutdown: replace
 - L1/2 midplane modules
 - \bullet worst case dose by then ~ 3.5 MRad
 - other malfunctioning modules
- New modules identical to existing ones
- New modules under construction now

Conclusion

- The BaBar SVT is working well
 - efficient
 - resolution according to spec
 - standalone tracking
- Replace radiation damaged modules in 04
- Extend lifetime to ~ 07
- After that ?
 - depends on many things (machine, physics etc.)